

# IEC61439-1&2

## A força de uma norma adaptada às suas necessidades

legais ou de mercado. A nova IEC 61439-1 & 2 estabelece

a referência normativa e comercial para o fabrico

A norma IEC 61439 satisfaz completamente as necessidades de projetistas e finais utilizadores de baixa tensão: segurança

das pessoas e dos bens, disponibilidad<u>e,</u> fiabilidade a longo prazo e conformidade com as normas.

essenciais, a norma estabelece Entre eles destaca-se a conceção

## verificação de interações

e o equipamento de baixa tensão. Requisitos, todos eles orientados para a proteção contra riscos



Schneider **Electric/IEC** Normalização: uma longa história de sucesso

Desde o fabrico do nosso primeiro quadro elétrico, a Schneider Electric cumpriu sempre o seu compromisso para com os Fabricantes de Quadros (quadristas) garantindo sistemas que oferecem um cumprimento rigoroso das

A Schneider Electric sempre considerou que a conformidade das suas soluções com as normas IEC são um requisito mínimo, um ponto de partida para o que é capaz de oferecer aos seus clientes. E de facto, no papel de fabricante de material elétrico, a Schneider Electric constantemente demonstra essa base diária.

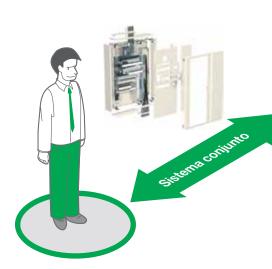


na construção de quadros elétricos ensaiados de acordo com as normas associadas.

das arquitecturas dos quadros são

## ota suporte

para os nossos clientes.


de quadros elétricos de distribuição eléctrica de baixa tensão ensaiados, da Schneider Electric no mundo inteiro.

# O fabricante de origem e o fabricante do conjunto (Quadrista):

Ambos envolvidos nos ensaios

do conjunto

A Norma IEC 61439 define e clarifica o tipo de verificações que devem ser realizadas pelas duas entidades envolvidas na conformidade final da solução: o fabricante de origem, garantindo a concepção da montagem do sistema e o fabricante do conjunto (quadrista) responsável pela conformidade final do quadro elétrico, segundo a norma.



## Fabricante de origem

A organização que realizou a concepção original e as verificações correspondentes ao sistema de conjunto, Quadro elétrico.

É igualmente responsável pela "verificação do projeto" enumerado na IEC 61439-2 incluindo vários ensaios elétricos.

### **Projetista**

- > Especifica os requisitos e condições do projeto, instalação, funcionamento e alteração do sistema completo.
- > Verifica se as suas exigências foram plenamente integradas pelo fabricante do conjunto (quadrista). Dependendo da aplicação o projetista pode ser um gabinete de projetos ou estar integrado no cliente final.



A organização (que pode ser ou não a mesma que o fabricante de origem) responsável pela **montagem final do quadro.** 

Conjunto testado

É responsável pelas
"Verificações individuais
de rotina" em todos os quadros
fabricados de acordo com
a norma.

Se não utilizar as instruções do fabricante terá que voltar a efectuar as verificações de projeto.

### **Utilizador final**

Deve solicitar um certificado do quadro de distribuição de baixa tensão. Deve requerer sistematicamente as verificações de rotina, para assegurar que o sistema do quadro cumpre com a norma.



# As 10 principais funções

Todas as verificações propostas pela norma IEC 61439 con a segurança, a continuidade de serviço e a conformidade c



## Segurança

## > Comportamento aos esforços elétricos face a sobretensões

#### Necessidades e requisitos do projeto

Capacidade para suportar sobretensões temporárias, transitórias e de longa duração, garantidas através das distâncias de isolamento, linhas de fuga e isolamento sólido

#### Verificação do projeto

- > Medição das distâncias de isolamento e linhas de fuga.
- > Ensaio de dielétrico à frequência industrial.
- > Ensaio de tensão de resistência aos impulsos de tensão, quando as distâncias de isolamento são maiores que os valores especificados.

#### Verificação de rotina

- > Inspeção visual das distâncias de isolamento (sujeitos às condições do projeto e às distâncias de isolamento).
- > Ensaio dielétrico à frequência industrial.

### > Capacidade de transporte de corrente

#### Necessidades e requisitos do projeto

Proteção contra incêndios através da limitação de temperaturas excessivas:

- > Quando qualquer circuito está continuamente em carga à corrente nominal.
- > Quando qualquer circuito está continuamente em carga à corrente nominal multiplicada pelo seu factor estipulado de diversidade.

#### Verificação do projeto

- > Ensaios de temperatura.
- > Comparação com um projeto de referência testado sob condições restritas de características para variantes similares.
- > Por cálculo em condições muito restritivas, com uma desclassificação de 20% nos dispositivos.

#### Verificação de rotina

- > Inspeção visual.
- > Verificação aleatória do binário de aperto.
- > Verificação do IP.

## Capacidade de resistência a correntes de curto-circuito

#### Necessidades e requisitos do projeto

Resistência às correntes de curto-circuito, graças a dispositivos de proteção, coordenação dos dispositivos de proteção aos curto-circuito e capacidade de suportar os esforços térmicos e dinâmicos resultantes das correntes de curto-circuito em todos os condutores.

#### Verificação do projeto

- > Ensaio de curto-circuito (Icc e Icw) do circuito principal, incluindo o condutor de neutro e de proteção.
- > Ou comparando com um projeto de referência testado sob condições restritivas.

#### Verificação de rotina

> Inspeção visual.

## > Proteção contra choques elétricos

#### Necessidades e requisitos do projeto

Elementos ou peças dispostas de forma a facilitar > Ensaio IPXXB e verificação dos materiais isolantes. a operação e manutenção por parte de pessoal qualificado e ao mesmo tempo garantir o grau de segurança necessário para alcançar as medidas de proteção necessárias à instalação.

#### Verificação do projeto

- > Ensaios de funcionamento mecânico.
- > Verificação das propriedades dieléctricas.
- > Medição da resistência entre as partes condutoras expostas e terminal de proteção (PE).
- > verificação da resistência ao curto-circuito do circuito de proteção.

#### Verificação de rotina

- > Inspeção visual, circuito de proteção e proteção de terra.
- > Verificação aleatória do binário de aperto das ligações de circuitos de proteção.

## > Proteção contra riscos de incêndio ou explosão

#### Necessidades e requisitos do projeto

Proteção de pessoas contra o risco de incêndio: > Ensaio do fio incandescente. Resistência à ignição interna de elementos, através da seleção de materiais, componentes e sua aplicação.

#### Verificação do projeto

- > Ensaio especial de acordo com a norma IEC/TR 61641, quando especificado.

#### Verificação de rotina

Nenhumas.

## da norma IEC 61439

tribuem para a obtenção de 3 objetivos básicos: om os requisitos do utilizador final



## Continuidade de serviço

## > Manutenção e capacidade de modificação

#### Necessidades e requisitos do projeto

Capacidade de preservar a continuidade de serviço sem colocar em risco a segurança durante a manutenção do quadro ou modificações realizadas por pessoal qualificado. Pode obter-se através de proteções básicas bem como pela utilização de componentes extraíveis opcionais.

#### Verificação do projeto

- > Ensaios de IP. > Ensaios de funcionamento mecânico.
- (especialmente das partes removíveis)

#### Verificação de rotina

- > Eficácia dos elementos de actuação mecânica.
- > Verificação da proteção de pessoas contra choques elétricos.

### > Compatibilidade Electromagnética

#### Necessidades e requisitos do projeto

O funcionamento adequado não gera perturbações eletromagnéticas através da incorporação de dispositivos eletrónicos de acordo com a norma CEM correspondente desde que sejam corretamente instalados.

#### Verificação do projeto

> Ensaios CEM de acordo com as normas do produto ou normas genéricas CEM.

#### Verificação de rotina

Nenhumas.



## Conformidade com os requisitos do utilizador final

## > Capacidade de operar a instalação elétrica

#### Necessidades e requisitos do projeto

Funcionamento correto, de acordo com:

- > O esquema elétrico e as suas especificações (tensões, correntes, seletividade, etc.) através da seleção e instalação de aparelhos apropriados.
- > As instalações de funcionamento especificadas (acesso ao diálogo homem-máquina, etc.) através da acessibilidade e identificação.

#### Verificação do projeto

- > Por inspeção.
- > Ensaio de resistência aos impulsos de tensão suportável das distâncias de isolamento.

#### Verificação de rotina

- > Inspeção visual.
- > Ensaio de verificação da eficácia dos elementos mecânicos e ensaio funcional (se relevante).

## > Capacidade de instalação em obra

#### Necessidades e requisitos do projeto

Capacidade de adaptação às limitações de manuseamento, armazenamento, transporte e instalação, capacidade de se instalar e ligar através da seleção ou projeto do invólucro e terminais externos, com IEC 62208. e por previsões e documentação.

#### Verificação do projeto

- > Por inspeção.
- > Ensaio de elevação de acordo

#### Verificação de rotina

> Número, tipo e identificação de teminais para condutores externos.

## Proteção contra influências externas (condições ambientais)

#### Necessidades e requisitos do projeto

Proteção do conjunto contra impactos mecânicos e condições atmosféricas adversas através da seleção de materiais e de disposições do projeto distintas.

#### Verificação do projeto

- > Ensaio IP.
- > Ensaio IK.
- > Ensaio Corrosão.
- > Ensaio UV

(somente para uso exterior).

#### Verificação de rotina

Nenhumas.

## Prisma Plus... 100% mais do que a



#### Capacidade de resistência ao curto-circuito



- A coordenação entre os equipamentos Schneider Electric e os componentes de distribuição Prisma Plus para as entradas e saídas, permite uma capacidade de resistência ao curto-circuito elevada.
- Esta característica de conceção do quadro elétrico permite uma continuidade de serviço otimizada em caso de defeito elétrico.



#### Proteção contra choques elétricos



- O Prisma Plus oferece componentes de base para alcançar o nível adequado de protecção elétrica IPxxB.
- Tampas para bloco de terminal.
- Tapa bornes para aparelhos.
- Compartimentação para barramento e ligações, separação dos barramentos e terminais até forma 4b.



#### Capacidade de resistência ao esforço eléctrico



- Distância de isolamento e linhas de fuga:
- Todas as unidades funcionais foram projetadas tendo em conta a distância de isolamento mínima para qualquer tipo de configuração definida para o conjunto de dispositivos da Schneider Electric.

  Por exemplo o disjuntor Compact NSX pode ser instalado com um comando rotativo, motorizado ou com base extraível que as distâncias de isolamento estão sempre garantidas.
- Os suportes de barramentos são concebidos para ter em conta as linhas de fuga mínimas exigidas pela norma IEC.



## norma IEC!

Product





#### Facilidade na manutenção e modificação



- O Sistema Prisma Plus além de IPxxB para a acessibilidade ao invólucro, foi projectado para oferecer uma organização elétrica, clara e lógica, permitindo um acesso seguro e simples para manutenção e eventuais ampliações.
- Permite realizar as intervenções em menos tempo e com menor risco de erros, diminuindo assim o tempo de inatividade e consequentemente melhora a continuidade de serviço.

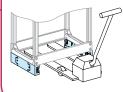


#### **Barramento Linergy**



- Permite ser acedido de forma fácil e segura, em caso de ser necessário ampliar a instalação removendo somente uma barreira frontal de forma 2.
- Os condutores são desfasados 25 milímetros entre si, possibilitando aos eletricistas qualificados executar a intervenção a partir da parte frontal do compartimento, não havendo necessidade de desmontar a parte lateral para ter acesso ao interior.
- Permite realizar as intervenções para ampliação ou manutenção de uma forma mais rápida e directa.




#### Comportamento ao choque



- Os componentes Prisma Plus foram concebidos para serem compatíveis com os dispositivos elétricos da Schneider Electric com uma especificação para suportar impulsos de tensão suportável até 12,8 kV.
- Os clientes dispõem de uma margem de segurança em caso de sobretensões transitórias na rede, aumentando a segurança e a continuidade de serviço da instalação ao longo do tempo.



#### Instalação em obra



• Para além de ser submetido a testes rigorosos, Prisma Plus, possui também acessórios de manipulação versáteis, de forma a abranger todas as possibilidades de instalação mesmo em locais onde o pé direito da instalação seja reduzido.

<sup>\*</sup>O uso exclusivo de aparelhos da Schneider Electric garante a conformidade com IEC e a fiabilidade das instalações.

## Algumas actualizações

## para maior segurança e durabilidade (montagens de conjuntos)

IEC 61439 -1 & -2\* = Apenas "conjuntos de aparelhagem de BT"

Regras gerais nova > IEC 61439-1 Quadros de Distribuição Conjuntos para obra >IEC 61439-2 > IEC 61439-3 > IEC 61439-4 > IEC 61439-5 >IEC 61439-6

## IEC 60439 -1 = "conjuntos de série" & "conjuntos derivados de série"

Regras Gerais + Quadros de tipo testado / quadros de tipo parcialmente testado > IEC 60439-1 Quadros de Distribuição Conjuntos para obra Canalizações prefabricadas > IEC 60439-3 > IEC 60439-4 > IEC 60439-5 > IEC 60439-2



### Resumo das principais mudanças (IEC 61439 vs IEC 60439)

#### > Verificação do projeto

- Requisitos aumentados em relação aos materiais isolantes e ensaios de isolamento e resistência às sobretensões transitórias.
- Verificação dos aquecimentos:
- o Verificação por ensaio de cada unidade funcional isoladamente à sua corrente nominal.
- o Métodos claros para a seleção de amostras representativas de montagem do sistema do quadro ou conjunto a testar.
- o Ensaio executado em 4 passos: unidades funcionais individuais, barramentos principais e de distribuição e do quadro completo.
- O As resistências de aquecimento só são permitidas para simular circuitos adjacentes ao submetido a ensaio.
- o Possibilidade de verificação por comparação com um projeto testado sob condições restritas, incluindo desclassificação.
- o Isenção de ensaios de aquecimento permitida até 1600A (cálculo) em vez de 3150A sob condições restritas, com uma desclassificação de 20%.
- Possibilidade de verificação da capacidade de resistência às correntes de curto-circuito por comparação com um projeto testado em condições restritas.
- 200 ciclos de funcionamento em vez de 50 para fechos, encravamentos e partes extraíveis.
- Ensaio de elevação (em conformidade com a norma IEC 62208).
- Ensaio de resistência à corrosão das partes metálicas (em conformidade com a norma IEC

#### > Verificação de rotina

- Lista de verificações mais detalhada.
- Requisitos mais restritos em relação às distâncias de isolamento.

Centro de atendimento ao Cliente

### 808 221 221

#### **Schneider Electric Portugal**

Sede:

Avenida Marechal Craveiro Lopes 6 1749-111 Lisboa Fax: 217 507 101

www.schneider-electric.com/pt

http://pt-energy-university.schneider-electric.com

Este documento foi redigido segundo o novo acordo Ortográfico da Língua Portuguesa

Art. BIEC61439-1&2°2012

Schneider Electric - Todos os direitos reservados.

Os produtos e materiais apresentados neste documento são suscetíveis de evolução, tanto nos planos da técnica e da estética, como no plano da utilização A sua descrição não pode, pois em caso algum, ser considerada como tendo um aspeto contratual Assim, só nos responsabilizamos pelas informações dadas após confirmação pelos nossos servicos.

<sup>\*</sup> IEC 61439-1 & -2 são publicadas desde Janeiro 2009, e IEC 61439-3 até - 6 devem ser publicadas até 2014.